
             

GEOPHYSICS, VOL. 62, NO. 1 (JANUARY-FEBRUARY 1997); P. 106–117, 7 FIGS., 1 TABLE.

Incorporating pore geometry and fluid pressure
communication into modeling the elastic
behavior of porous rocks

Anthony L. Endres∗ and Rosemary J. Knight‡

ABSTRACT

Inclusion-based formulations allow an explicit de-
scription of pore geometry by viewing porous rocks as a
solid matrix with embedded inclusions representing in-
dividual pores. The assumption commonly used in these
formulations that there is no fluid pressure communica-
tion between pores is reasonable for liquid-filled rocks
measured at high frequencies; however, complete fluid
pressure communication should occur throughout the
pore space at low frequencies. A generalized framework
is presented for incorporating complete fluid pressure
communication into inclusion-based formulations, per-
mitting elastic behavior of porous rocks at high and low
frequencies to be described in terms of a single model.
This study extends previous work by describing the pore
space in terms of a continuous distribution of shapes and
allowing different forms of inclusion interactions to be
specified.

The effects of fluid pressure communication on the
elastic moduli of porous media are explored by using sim-
ple models and are found to consist of two fundamental
elements. One is associated with the cubical dilatation

and governs the effective bulk modulus. Its magnitude
is a function of the range of pore shapes present. The
other is due to the extensional part of the deviatoric
strain components and affects the effective shear mod-
ulus. This element is dependent on pore orientation, as
well as pore shape. Using sandstone and granite models,
an inclusion-based formulation shows that large differ-
ences between high- and low-frequency elastic moduli
can occur for porous rocks. An analysis of experimental
elastic wave velocity data reveals behavior similar to that
predicted by the models.

Quantities analogous to the open and closed system
moduli of Gassmann-Biot poroelastic theory are de-
fined in terms of inclusion-based formulations that in-
corporate complete fluid pressure communication. It
was found that the poroelastic relationships between
the open and closed system moduli are replicated by
a large class of inclusion-based formulations. This con-
nection permits explicit incorporation of pore geometry
information into the otherwise empirically determined
macroscopic parameters of the Gassmann-Biot poroe-
lastic theory.

INTRODUCTION

The elastic properties of porous rocks are dependent on their
pore structure and the contained fluids. At seismic frequencies
(i.e., less than 2 kHz), the Gassmann-Biot poroelastic theory
(Gassmann, 1951; Biot, 1956a,b) satisfactorily describes the
elastic wave velocities in porous rocks (Murphy, 1984a). How-
ever, this approach cannot be used to predict the dependence
of elastic behavior on pore structure because pore geometry
information is incorporated through the use of empirically de-
termined macroscopic parameters. A second limitation of this
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approach is that it cannot be readily extended to consider the
elastic behavior of liquid-filled media at high frequencies. The
poroelastic assumption of complete fluid pressure communi-
cation throughout the pore space becomes invalid as measure-
ment frequency increases (Cleary, 1978). As a result, the Biot
formulation underestimates the velocity dispersion commonly
observed in porous rocks (Winkler, 1985; Wang and Nur, 1990).

In contrast, inclusion-based models (e.g., Kuster and Toksöz,
1974) incorporate the effects of pore geometry by viewing
porous rocks as a solid matrix with embedded inclusions repre-
senting the pores. This type of model commonly assumes that
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the inclusions are isolated, simulating the conditions encoun-
tered in measurements at ultrasonic frequencies (i.e., greater
than 100 kHz). Hence, inclusion-based models have been found
to be more accurate than the poroelastic theory in describ-
ing ultrasonic data (Coyner, 1984; Murphy, 1984a; Wang et al.,
1991). However, this approach cannot be used to predict low-
frequency behavior.

To permit the direct comparison of laboratory measurements
performed at ultrasonic frequencies with surface and borehole
data obtained at much lower frequencies, it is necessary to de-
velop a formulation that is valid for both cases. Mavko and
Jizba (1991) and Dvorkin and Nur (1993) have attempted to
extend the poroelastic theory to the higher frequency regime.
However, these formulations continue to use parameters that
implicitly incorporate the effects of pore geometry; hence, the
problem of quantitatively predicting the effects of pore geom-
etry still exists. The alternate approach is to adapt inclusion-
based formulations to the low-frequency range by incorporat-
ing interpore fluid pressure communication.

In this paper we expand upon previous results (O’Connell
and Budiansky, 1977; Budiansky and O’Connell, 1980) to ob-
tain generalized expressions for effective elastic moduli when
interpore fluid pressure communication is incorporated into
inclusion-based formulations. The extensions of the previous
work presented here are two-fold. First, the pore structure is
described as a continuous spectrum of pore shapes instead of
a segregation of the pore space into two categories: spherical
pores and very thin cracks. Second, different forms of inclusion
interaction can be specified; hence, the various inclusion-based
formulations that have appeared in the literature can be de-
rived. Using expressions for specific inclusion-based approxi-
mations, an equivalence between inclusion-based formulations
and the Gassmann-Biot poroelastic theory can be shown. This
permits the explicit incorporation of pore geometry informa-
tion into the definition of poroelastic parameters.

The effects of fluid pressure communication on the elastic
properties of porous media are assessed by considering mod-
els with various pore shape distributions. The role of interpore
fluid pressure communication in the frequency dependent elas-
tic behavior of porous rocks is examined by using the inclusion-
based models for three rocks given by Cheng (1978). Experi-
mental data analyzed in this paper exhibit behavior similar to
that predicted by these three rock models. The incorporation
of fluid pressure communication into inclusion-based models
provides insights into the nature of the changes in the elastic
behavior of porous rocks that occur over the range of frequen-
cies used in geophysical investigations.

VOLUMETRIC AVERAGING APPROACH

Two different methods, the volumetric averaging and inter-
action energy approaches, are used commonly in conjunction
with inclusion-based models to determine the effective elastic
moduli of a heterogeneous system. First, we will use the
volumetric averaging approach (Hill, 1963) to determine the
elastic behavior of the porous rock model. The solid matrix has
bulk and shear moduli km and µm, respectively. The pore space
is filled with a fluid having a bulk modulus k f ; the fluid shear
modulus µ f is zero. The microscopic structure of the porous
rock is uniformly distributed such that its macroscopic elastic
response can be equated with an effective homogeneous,

isotropic medium with bulk and shear moduli k∗ and µ∗,
respectively. A representative volume element (RVE) of the
porous rock system that is large in comparison to the scale
of the inclusions, yet small in contrast to the size of the total
system, is selected; the volume of the RVE is V . Using the vol-
umetric averaging approach, it can be shown that the cubical
dilatation and deviatoric components of the incremental strain
tensor, ∂θ and ∂ei j , respectively, in the RVE can be expressed as

k∗〈∂θ〉V = km〈∂θ〉V + φ(k f − km)〈∂θ〉V̄ (1)

and

µ∗〈∂ei j 〉V = µm[〈∂ei j 〉V − φ〈∂ei j 〉V̄ ], (2)

where 〈· · ·〉V ′ denotes the volumetric average over a volume
V ′ as given by

〈 f 〉V ′ = (1/V ′)
∫

V ′ f (x) dv, (3)

V̄ is the volume occupied by the pore space in the RVE, and
φ = V̄/V is the porosity.

Obtaining k∗ and µ∗ from equations (1) and (2) requires the
determination of the incremental strain within the inclusions
representing the individual pores. This is very difficult for an ar-
bitrary pore geometry; however, estimates can be obtained by
restricting the inclusions used in the model to specific shapes.
For porous rocks, the shape of individual pores can be approx-
imated by oblate spheroidal inclusions. The shape of a pore is
characterized by its aspect ratio

α = a/b, (4)

where a and b are the lengths of the minor and major axes
of the inclusion, respectively. The macroscopic isotropy of the
system implies that the individual inclusions are randomly ori-
ented. The pore structure in the RVE is described in terms of
a volumetric pore shape distribution v̄(α) where

V̄ =
∫ 1

0
v̄(α) dα. (5)

To estimate the incremental strain within the individual
pores, an inclusion embedded in a homogeneous, infinite back-
ground material having elastic moduli kb and µb is considered.
This system is subjected to an applied incremental strain field
that has uniform cubical dilatation and deviatoric components
∂θ A and ∂eA

i j , respectively, at infinity. The background material
and applied incremental strain field used in this analysis are
specified such that the interactions between inclusions within
the RVE are simulated. From Eshelby (1957), it can be shown
that the expected value of the cubical dilatation and devia-
toric components of the incremental strain inside a randomly
oriented inclusion are (Berryman, 1980b)

∂θ inc(α) = P(kb, µb, kinc, µinc, α)∂θ A (6)

and

∂einc
i j (α) = Q(kb, µb, kinc, µinc, α)∂eA

i j , (7)

respectively, where kinc and µinc are the bulk and shear moduli
of the inclusion material. The terms P and Q are complicated
functions defined in Berryman (1980b).
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Equations (6) and (7) were derived under the condition that
there is no fluid pressure communication between pores. As-
suming that all inclusions in the RVE are subjected to the same
apparent background material and applied incremental strain
fields, the effective elastic moduli obtained from equations (1)
and (2) for the case of isolated pores are

k∗
iso〈∂θ〉V = km〈∂θ〉V + φ(k f − km)γ̄ (kb, µb, k f , 0)∂θ A

(8)
and

µ∗
iso〈∂ei j 〉V = µm

[〈∂ei j 〉V −φχ̄(kb, µb, k f , 0)∂eA
i j

]
, (9)

where

γ̄ (kb, µb, k f , 0) =
∫ 1

0
c̄(α)P(kb, µb, k f , 0, α) dα, (10)

χ̄(kb, µb, k f , 0) =
∫ 1

0
c̄(α)Q(kb, µb, k f , 0, α) dα (11)

and

c̄(α) = v̄(α)/V̄ . (12)

The pore shape spectrum c̄(α) is the probabilistic density func-
tion that describes the pore shape distribution per unit volume
of porosity.

In the case of complete fluid pressure communication be-
tween pores, an incremental fluid pressure change ∂p f is in-
duced in each pore when the system in the RVE is subjected
to an applied incremental strain. Using the Eshelby (1957) ap-
proach (see Appendix A), it can be shown that the expected
values of the incremental strain components within an individ-
ual pore with aspect ratio α under these conditions are[
∂θ inc(α) + ∂p f /kb

] = (
∂θ A + ∂p f /kb

)
P(kb, µb, 0, 0, α)

(13)
and

∂einc
i j (α) = Q(kb, µb, 0, 0, α)∂eA

i j . (14)

The incremental change in total pore volume ∂ V̄ is related to
the incremental cubical dilatation within the individual pores
and ∂pf by

∂ V̄ =
∫ 1

0
v̄(α)∂θ inc(α) dα (15)

and

∂p f = −k f ∂ V̄/V̄, (16)

respectively. It follows that the incremental cubical dilatation
within an inclusion with aspect ratio α is given by

∂θ inc(α) =
(kb − k f )P(kb, µb, 0, 0, α) + k f γ̄ (kb, µb, 0, 0)

k f [γ̄ (kb, µb, 0, 0) − 1] + kb
∂θ A.

(17)

Once again assuming that all inclusions in the RVE are sub-
jected to the same apparent background material and applied

incremental strain fields, equations (1) and (2) give the follow-
ing expressions for the effective elastic moduli when complete
fluid pressure communication occurs:

k∗
com〈∂θ〉V = km〈∂θ〉V + φkb(k f − km)γ̄ (kb, µb, 0, 0)

kb + k f [γ̄ (kb, µb, 0, 0) − 1]
∂θ A

(18)

and

µ∗
com〈∂ei j 〉V = µm

[〈∂ei j 〉V − φχ̄(kb, µb, 0, 0)∂eA
i j

]
.

(19)

The above results are the generalized expressions for the
effective elastic moduli that result from the volumetric aver-
aging approach: equations (8) and (9) for the case of isolated
pores and equations (18) and (19) when complete pressure
communication occurs. To obtain explicit estimates of these
moduli, it is necessary to define the nature of the inclusion in-
teractions in the RVE. This will now be done for three specific
inclusion-based approximations: the dilute volumetric average,
the Kuster-Toksöz and the equivalent inclusion-average stress
approximations. In all three cases, it is assumed that the actual
solid matrix of the porous rock is equivalent to the apparent
background material (i.e., kb = km and µb = µm); the in-
clusion interactions are characterized in terms of the applied
incremental strain.

The dilute volumetric average approximation assumes that
the inclusion concentration is sufficiently small that interac-
tions between inclusions can be neglected. This implies that
the applied incremental strain is identical to the volume aver-
age of the incremental strain in the RVE [i.e., ∂θ A = 〈∂θ〉V and
∂eA

i j = 〈∂ei j 〉V ]. The following expressions are derived for the
dilute volumetric average approximation effective moduli:

k∗
iso = km + φ(k f − km)γ̄ (km, µm, k f , 0), (20)

µ∗
iso = µm[1 − φχ̄(km, µm, k f , 0)], (21)

k∗
com = km + φkm(k f − km)γ̄ (km, µm, 0, 0)

km + k f [γ̄ (km, µm, 0, 0) − 1]
, (22)

and

µ∗
com = µm[1 − φχ̄(km, µm, 0, 0)]. (23)

Kuster and Toksöz (1974) attempted to overcome dilute in-
clusion concentration limitations by using a method referred
to as the average T matrix approximation (Berryman, 1992).
In this approach, a spherical volume of the porous rock sys-
tem is embedded in an infinite background having moduli km
and µm and subjected to an applied incremental strain that is
uniform at infinity. Its behavior is compared with the response
of an identical size homogeneous sphere composed of the ef-
fective medium under the same conditions. It is assumed that
the elastic wave scattering observed in the far-field is the same
for both systems. For the quasi-static case, this condition im-
plies that the volume averages of the incremental stress and
strain in the porous medium sphere are equal to the uniform
incremental stress and strain in the homogeneous sphere. This
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requirement leads to the following relationships between the
applied and volumetric average incremental strains:

∂θ A = (
3k∗ + 4µm

)〈∂θ〉V/(3km + 4µm), (24)

and

∂eA
i j = [

6µ∗(km + 2µm) + µm(9km + 8µm)
]

× 〈∂ei j 〉V/[5µm(3km + 4µm)]. (25)

Using these expressions for inclusion interactions, the effective
moduli for the Kuster-Toksöz approximation are

k∗
iso =

km(3km + 4µm) + 4φµm(k f − km)γ̄ (km, µm, k f , 0)
3km + 4µm − 3φ(k f − km)γ̄ (km, µm, k f , 0)

,

(26)
µ∗

iso =
µm

15km + 20µm − φ(9km + 8µm)χ̄(km, µm, k f , 0)
15km + 20µm + 6φ(km + 2µm)χ̄(km, µm, k f , 0)

,

(27)

k∗
com = km

(3km + 4µm)(km − k f ) + [k f (3km + 4µm) + 4φµm(k f − km)]γ̄ (km, µm, 0, 0)
(3km + 4µm)(km − k f ) + [k f (3km + 4µm) − 3φkm(k f − km)]γ̄ (km, µm, 0, 0)

, (28)

and

µ∗
com =

µm
15km + 20µm − φ(9km + 8µm)χ̄(km, µm, 0, 0)
15km + 20µm + 6φ(km + 2µm)χ̄(km, µm, 0, 0)

.

(29)

However, the Kuster-Toksöz approximation also has concen-
tration limitations; it violates the Hashin-Shtrikman bounds
(Hashin and Shtrikman, 1963) when nonspherical inclusions
are present in a sufficient quantity (Berryman, 1980a, b).

The third treatment of inclusion interactions that we con-
sider is the equivalent inclusion-average stress (EIAS) approx-
imation (Benveniste, 1987). This approach is consistent with
the Hashin-Shtrikman bounds when applied to two-phase sys-
tems regardless of the pore shape spectrum (Norris, 1989). The
EIAS approach assumes that the applied incremental strain is
equal to the volumetric average of the incremental strain in the
solid matrix:

〈∂θ〉V = (1 − φ)∂θ A + φ〈∂θ〉V̄ , (30)

and

〈∂ei j 〉V = (1 − φ)∂eA
i j + φ〈∂ei j 〉V̄ . (31)

The resulting expressions for the effective elastic moduli of the
EIAS formulation are

k∗
iso = km + φ(k f − km)γ̄ (km, µm, k f , 0)

/{
(1 − φ)

+ φγ̄ (km, µm, k f , 0)}, (32)

µ∗
iso = µm{1 − φχ̄(km, µm, k f , 0)

/
[(1 − φ)

+ φχ̄(km, µm, k f , 0)]
}
, (33)

k∗
com = km

+ φkm(k f − km)γ̄ (km, µm, 0, 0)
(1 − φ)(km − k f ) + [k f + φ(km − k f )]γ̄ (km, µm, 0, 0)

,

(34)
and

µ∗
com = µm

{
1 − φχ̄(km, µm, 0, 0)

/
[(1 − φ) + φχ̄(km, µm, 0, 0)]

}
. (35)

Other inclusion-based approximations found in the litera-
ture that are based on the volumetric averaging principle are
obtained by using different descriptions of the inclusion in-
teractions or by varying the averaging procedure. However, it
will be seen that these three approximations possess desirable
qualities when compared with these other inclusion-based
approximations.

INTERACTION ENERGY APPROACH

In addition to the volumetric averaging method, the
interaction energy approach (Eshelby, 1957) has been used to

determine the effective elastic moduli from inclusion-based
models. This description considers the change in the strain en-
ergy within the RVE due to the presence of the inclusions as
defined by the relationship

E∗ = Em − 1E, (36)

where E∗ is the strain energy in the effective medium, Em is
the strain energy in the matrix material prior to inclusion em-
bedding, and 1E is the change in strain energy due to the pres-
ence of the inclusions. Surface tractions are applied such that
the incremental stress in the RVE is uniform with hydrostatic
pressure and deviatoric components ∂ ṗ and ∂ ṡi j , respectively.
Assuming that the surface tractions are held constant, then

E∗ = (V/2)
[
∂ ṗ2/k∗ + ∂ ṡi j ∂ ṡi j /(2µ∗)

]
(37)

and

Em = (V/2)
[
∂ ṗ2/km + ∂ ṡi j ∂ ṡi j /(2µm)

]
. (38)

To estimate 1E, the case of an individual inclusion embed-
ded in a homogeneous, infinite background material is again
analyzed. However, this system is now subjected to an applied
incremental stress field having uniform hydrostatic pressure
and deviatoric components ∂pA and ∂sA

i j , respectively, at in-
finity. Eshelby (1957) showed that the change in strain energy
1E′ within this system is given by

1E′ = (−Vinc/2)
( −∂θT∂pA + ∂eT

i j ∂sA
i j

)
, (39)

where Vinc is the volume of the inclusion and ∂θT and ∂eT
i j are

the cubical dilatation and deviatoric components, respectively,
of the incremental “stress-free transformation” strain. From
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the Eshelby (1957) equivalent inclusion analysis, it can be
shown that the expected values of the incremental “stress-free
transformation” strain components for a randomly oriented
isolated inclusion with aspect ratio α are given by

∂θT (α) = (k f − kb)P(kb, µb, k f , 0, α)∂pA/
k2

b (40)

and

∂eT
i j (α) = Q(kb, µb, k f , 0, α)∂sA

i j

/
(2µb). (41)

From Appendix A and equations (15)–(17), it can be shown
that the expected values of the incremental “stress-free trans-
formation” strain components for an identically shaped inclu-
sion when complete pressure communication occurs are

∂θT (α) = (kb − k f )P(kb, µb, 0, 0, α)∂pA/
{
kb

{
k f [1 − γ̄ (kb, µb, 0, 0)] − kb

}}
(42)

and

∂eT
i j (α) = Q(kb, µb, 0, 0, α)∂sA

i j

/
(2µb). (43)

Using these results, the following generalized expressions
are derived for the effective elastic moduli of the porous
medium. In the case where all inclusions are totally isolated,

∂ ṗ2/k∗
iso = ∂ ṗ2/km + φ(kb − k f )

× γ̄ (kb, µb, k f , 0)(∂pA)2/(
k2

b

)
(44)

and

∂ ṡi j ∂ ṡi j /µ
∗
iso = ∂ ṡi j ∂ ṡi j /µm + φχ̄(kb, µb, k f , 0)

× ∂sA
i j ∂sA

i j /µb. (45)

When complete fluid pressure communication occurs through-
out the pore space,

∂ ṗ2

k∗
com

= ∂ ṗ2

km
+ ϕ(k f − kb)γ̄ (kb, µb, 0, 0)

kb{k f [1 − γ̄ (kb, µb, 0, 0)] − kb}
(∂pA)2

(46)

and

∂ ṡi j ∂ ṡi j /µ
∗
com = ∂ ṡi j ∂ ṡi j /µm + φχ̄(kb, µb, 0, 0)

× ∂sA
i j ∂sA

i j /µb. (47)

The specific interaction energy approximation of interest
uses the dilute inclusion concentration assumption proposed
in Eshelby (1957) (i.e., kb = km, µb = µm, ∂pA = ∂ ṗ and
∂sA

i j = ∂ ṡi j ). This dilute condition differs from that used in the
volumetric averaging approach in that ∂θ A = (k∗/km)∂θ̇ and
∂eA

i j = (µ∗/µm)∂ėi j . Hence, the dilute interaction energy ap-
proximation gives the following expressions for the effective
moduli:

k∗
iso = k2

m
/

[km + φ(km − k f )γ̄ (km, µm, k f , 0)], (48)

µ∗
iso = µm/[1 + φχ̄(km, µm, k f , 0)], (49)

k∗
com = km

k f [1 − γ̄ (km, µm, 0, 0)] − km

k f − km + [φ(k f − km) − k f ]γ̄ (km, µm, 0, 0)
,

(50)

and

µ∗
com = µm/[1 + φχ̄(km, µm, 0, 0)]. (51)

The expressions for k∗
com and µ∗

com obtained from the volu-
metric averaging [equations (18) and (19)] and interaction en-
ergy [equations (46) and (47)] approaches are generalized ver-
sions of the results given in Budiansky and O’Connell (1980).
Unlike the previous work where the pore space is divided into
two shapes (i.e., spheres with α = 1 and very thin cracks with
α ≈ 0), the pore geometry is now described in terms of a con-
tinuous shape spectrum. In addition, various inclusion-based
formulations that have appeared in the literature can now be
obtained directly from this new result by defining different de-
scriptions of inclusion interactions in terms of the apparent
background moduli and applied incremental strain or stress.

RELATIONSHIP TO GASSMANN-BIOT THEORY

In the static limit, the Gassmann-Biot theory relates the elas-
tic response of a porous medium under open and closed condi-
tions. An open (i.e., drained) system permits the pore fluid to
cross the boundaries of the porous medium freely with changes
in the applied conditions. There is no incremental pore fluid
pressure change caused by this process. Pore fluid is confined
within the system during variations in applied conditions under
closed (i.e., undrained) conditions. Gassmann (1951) showed
that the bulk moduli under open and closed conditions, kopen
and kclosed, respectively, are related by

kclosed = km
k f (km − kopen) + φkopen(km − k f )
k f (km − kopen) + φkm(km − k f )

. (52)

Assuming that there is no change in total pore volume because
of an applied shear stress, Gassmann argued that the compress-
ibility of the pore fluid does not affect the shear modulus of the
overall system; hence,

µclosed = µopen. (53)

Using the inclusion-based formulations derived for com-
plete pressure communication, analogs for the open and closed
system moduli of the poroelastic theory can be defined. The
inclusion-based moduli k∗

com and µ∗
com are the counterparts of

kclosed and µclosed in the poroelastic theory. The open-system
conditions are replicated in the inclusion-based formulations
by using an infinitely compressible fluid (i.e., k f = 0). Using this
condition in the expressions for k∗

com and µ∗
com, the inclusion-

based equivalents of the open-system moduli k∗
open and µ∗

open
are obtained.

For the dilute volumetric average, Kuster-Toksöz, EIAS and
dilute interaction energy approximations, it can be shown that
the relationship between the inclusion-based analogs for the
open and closed system moduli are identical to the Gassmann
(1951) poroelastic relationships. This is accomplished by re-
placing kopen and µopen in equations (52) and (53) with the
expressions obtained for k∗

open and µ∗
open from each of these
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approximations. The open-system moduli for these four ap-
proximations are given in Appendix B. After some algebraic
manipulation, it is found that kclosed = k∗

com and µclosed =
µ∗

com for each approximation. An example of this procedure
for the dilute volumetric average approximation is shown in
Appendix B. Previously, Thomsen (1985) reported a similar
result for a dilute concentration version of the Budiansky and
O’Connell (1980) formulation.

In addition to these four inclusion-based approximations,
formulations using the self-consistency condition to simulate
inclusion interactions (Wu, 1966; Budiansky and O’Connell,
1976; Korringa et al., 1979; Berryman, 1980a,b) and the differ-
ential effective medium (DEM) approximation (Norris, 1985)
have been used to analyze the elastic behavior of porous rocks.
When expressions for k∗

com and µ∗
com for these approximations

were derived using the framework presented in this paper, it
was found that the connections between the resulting inclusion-
based analogs for open and closed system moduli are not de-
scribed by the Gassmann (1951) poroelastic relationships. The
initial work in Budiansky and O’Connell (1980) used a self-
consistent formulation; hence, their result is also not consis-
tent with the Gassmann-Biot theory, as earlier reported by
Thomsen (1985). While the reason for this is not clear im-
mediately, both the self-consistency assumption and the DEM
approximation imply definite hierarchical relationships in the
structure of the medium (Milton, 1984).

Thomsen (1985) and Berryman (1992) have proposed meth-
ods to overcome violation of the Gassmann (1951) poroelastic
relationships by the self-consistent and DEM approximations.
Our implementation of the Thomsen (1985) scheme found that
the resulting inclusion-based analogs for open and closed sys-
tem moduli satisfied the Gassmann (1951) relationships when
only spherical pores are used. The results given by Berryman
(1992) are limited to spherical inclusions due to the complex-
ity of the scattering technique used in the analysis of inclu-
sion response when applied to nonspherical inclusions. Given
the special nature of spherical inclusions (which will be illus-
trated in the modeling section), it is not readily apparent that
the Berryman (1992) approach would be successful when non-
spherical pores are used.

This equivalence between the Gassmann-Biot theory and
the dilute volumetric average, Kuster-Toksöz, EIAS and dilute
interaction energy approximations allows definition of poroe-
lastic parameters, which have generally been treated as empiri-
cal quantities, in terms of pore space geometry. Further, all four
approximations have explicit, closed-form expressions for the
effective elastic moduli that permit easy computation. A sim-
ilar definition of the Gassmann-Biot open-system moduli in
terms of an inclusion-based model was suggested by Korringa
and Thompson (1977); however, its equivalence could not be
demonstrated because of their use of a self-consistent formu-
lation.

MODELING RESULTS

In this section, the relationship between pore structure and
the effects of fluid pressure communication will be examined
using inclusion-based models. This is accomplished by consid-
ering models for porous media where the pore space geom-
etry is described in terms of discrete pore shape spectra. For
a porous medium with N discrete pore shapes, the following

quantities in the inclusion-based formulations are given by

γ̄ (kb, µb, k f , 0) =
N∑

n=1

c̄(αn)P(kb, µb, k f , 0, αn), (54)

and

χ̄(kb, µb, k f , 0) =
N∑

n=1

c̄(αn)Q(kb, µb, k f , 0, αn). (55)

Let us consider a series of “sphere-crack” models that have
pore shape spectra containing two shapes: spheres (α1 = 1)
and identically shaped “cracks” (α2 < 1). These models dif-
fer from those used in Budiansky and O’Connell (1980) by
permitting the cracks to have nonzero aspect ratios. The pore
shape spectrum for a given model is uniquely specified by α2
and the volume fraction of the pore space composed of cracks
[i.e., crack fraction c̄(α2) = 1 − c̄(α1)]. The pore fluid is as-
sumed to be water; hence, k f = 2.32 GPa. The elastic mod-
uli for the rock matrix are km = 30 GPa and µm = 17 GPa.
The porosity was maintained constant at φ = 0.1 for all
sphere-crack models. Given the favorable inclusion concen-
tration limitations of the EIAS approximation, it was used to
determine the effective moduli for the cases of isolated inclu-
sions [equations (32) and (33)] and complete fluid pressure
communication [equations (34) and (35)]. The relative dif-
ferences in k∗ [i.e., 1k∗

rel = (k∗
iso − k∗

com)/k∗
com] and µ∗ [i.e.,

1µ∗
rel = (µ∗

iso − µ∗
com)/µ∗

com] as functions of c̄(α2) for various
α2 values are shown in Figures 1 and 2, respectively.

The effects of fluid pressure communication on the elastic
moduli of porous media consist of two fundamental elements.
One is associated with the cubical dilatation and governs k∗.
The other is caused by the extensional part of the deviatoric
strain components and affects µ∗. The magnitude of the vol-
ume change for a pore caused by a given ∂θ A increases as its
aspect ratio decreases. Because ∂θ A is a scalar quantity, this
volume change is independent of the pore orientation. Hence,
the incremental fluid pressure change is the same in identically
shaped pores. When only a single pore shape is present, the

FIG. 1. Relative difference in k∗ [i.e., 1k∗
rel =(k∗

iso−k∗
com)/k∗

com]
for water-filled sphere-crack models as a function of crack frac-
tion [c̄(α2)]. Crack aspect ratio (α2) for models are denoted on
the figure.
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incremental fluid pressure is the same throughout the entire
pore space whether pores are isolated or complete pressure
communication occurs. This leads to the result k∗

iso = k∗
com in

this circumstance. This is seen in Figure 1 where 1k∗
rel goes to

zero when c̄(α2) equals 0 or 1.
When both spheres and cracks are present [i.e.,

0 < c̄(α2) < 1], the effects of fluid pressure communica-
tion conditions on k∗ become apparent. The induced fluid
pressure change in the cracks is greater than in the spheres.
When there is fluid pressure communication between the
pores, excess fluid pressure in the cracks is relieved by fluid
moving to the lower pressure regime in the spheres. Effec-
tively, the communicating cracks are softened relative to their
state when pores are isolated. This implies that k∗

iso > k∗
com

and 1k∗
rel > 0. This effect increases as the crack aspect ratio

decreases; this is seen on Figure 1 as increasing values of 1k∗
rel

are obtained as α2 decreases when c̄(α2) is held constant.
The dependence of 1k∗

rel on the crack fraction c̄(α2) is the
result of two competing factors, resulting in the maximum in
1k∗

rel that is observed in Figure 1 for all values of α2. The initial
replacement of the spheres by cracks [i.e., as c̄(α2) increases
from 0.0] leads to a more rapid increase in pore space com-
pressibility for the complete pressure communication case than
that which occurs when the pores are isolated; this leads to in-
creasing 1k∗

rel values. However, this replacement of the spheres
reduces the volume of lower pressure regime into which the
cracks expel their contents. This causes the difference in pore
space compressibility between the two pressure conditions to
lessen. Eventually, this results in decreasing 1k∗

rel once some
critical value of c̄(α2) is reached. As α2 decreases, this critical
value of c̄(α2) occurs at lower crack fractions, resulting in a
shift of the maximum 1k∗

rel value.
The extensional part of ∂eA

i j causes a volume change in an in-
dividual pore which is dependent on its orientation with respect
to ∂eA

i j , as well as its shape. In the case of randomly oriented
isolated pore spaces, this results in induced fluid pressure vari-
ations among pores of the same shape and a coupling between

FIG. 2. Relative difference in µ∗ [i.e., 1µ∗
rel = (µ∗

iso − µ∗
com)/

µ∗
com] for water-filled sphere-crack models as a function of

crack fraction [c̄(α2)]. Crack aspect ratio (α2) for models are
denoted on the figure.

∂einc
i j (α) and k f in the nonspherical pores. For spherical

pores, ∂eA
i j will always be a purely shear strain (i.e., zero ex-

tensional components); hence, there is zero incremental pore
volume change and no resultant coupling between ∂einc

i j (α) and
k f . When the cumulative volume change of the individual pores
is considered, it is found that there is no overall change in the
total pore volume. Since it is the total pore volume variation
that controls the induced fluid pressure change in the com-
plete pressure communication case, the zero total pore volume
change results in a decoupling of ∂einc

i j (α) from k f . This means
a communicating pore responds in the same manner as an iden-
tically shaped cavity to a given ∂eA

i j .
This difference in the coupling between ∂einc

i j (α) and k f for
the two pressure communication conditions implies that µ∗

iso ≥
µ∗

com and 1µ∗
rel ≥ 0. As c̄(α2) increases, isolated spheres where

no coupling occurs are replaced by isolated cracks in which
coupling takes place; hence, 1µ∗

rel monotonically increases as
shown in Figure 2. This coupling effect is enhanced in Figure 2
as α2 decreases due to the increased coupling that happens in
an isolated pore as its aspect ratio shrinks.

If only spherical pores are present, there is no induced fluid
pressure within the pores due to ∂eA

i j regardless of the nature
of the interpore pressure communication. Thus, the effective
shear modulus is independent of k f ; and, µ∗

iso = µ∗
com. This

produces the zero 1µ∗
rel value at c̄(α2) = 0 in Figure 2. This

condition, combined with the fact that k∗
iso = k∗

com when a single
shape is present, explains the equivalence between the Kuster-
Toksöz approximation using isolated spherical inclusions and
the Gassmann-Biot formulation noted in Toksöz et al. (1976).

The effects of fluid pressure communication on the elastic
moduli of porous rocks were examined by using the Berea
sandstone, Boise sandstone, and Troy granite models given in
Cheng (1978). The pore shape spectra for these rocks are esti-
mates for the pore geometry at zero effective pressure based on
the fitting of velocity-effective pressure data using the Kuster-
Toksöz approximation. The pore shape spectra for these mod-
els are shown in Figure 3, and rock matrix moduli and porosi-
ties are given in Table 1. The effective moduli were determined
using the Kuster-Toksöz approximation [equations (26)–(29)],
and 1k∗

rel and 1µ∗
rel for k f values between 100 kPa and 10 GPa

are shown in Figures 4 and 5, respectively. A large portion of
this range of k f values can be viewed as the behavior of a par-
tially saturated rock when air (155 kPa) and water (2.32 GPa)
are the pore fluids. The response of these models indicates
that the variation in the elastic moduli of a porous rock due to
changes in fluid pressure communication can be very large. The
maximum relative change is greater for k∗ (i.e., on the order of
one to five times k∗

com) than for µ∗ (i.e., 20% to 40% of µ∗
com).

Since the case of isolated inclusions corresponds to conditions
at the high-frequency limit and complete pressure communi-
cation occurs at the low-frequency limit, large differences are

Table 1. Matrix elastic moduli and porosity for the Berea
sandstone, Boise sandstone and Troy granite models from
Cheng (1978).

Berea Boise Troy
sandstone sandstone granite

km (in GPa) 33.0 30.0 70.0
µm (in GPa) 24.5 17.0 35.0
φ 16.3% 25.0% 0.33%
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predicted in the elastic moduli determined from ultrasonic and
seismic frequency measurements.

The responses of all the rock models have common fea-
tures. The difference in the induced fluid pressure between
the low and high aspect ratio pores grows as k f initially in-
creases; hence, the effects of fluid pressure relaxation in the
lower aspect ratio pores are amplified. This leads to the in-
creasing 1k∗

rel observed in Figure 4. However, the amount of
pore volume change decreases as k f approaches the magni-
tude of the rock matrix moduli; this acts to decrease the effects
of fluid pressure relaxation in the crack and decreases 1k∗

rel.
Hence, there is a tradeoff between these competing mecha-
nisms as k f increases; this results in a maximum value in 1k∗

rel
and its decrease in Figure 4. The value of 1µ∗

rel increases mono-
tonically with increasing k f in Figure 5 as the magnitude of the
coupling in the isolated nonspherical pores grows and µ∗

com
remains constant.

FIG. 3. Pore shape spectrum for Berea sandstone, Boise sand-
stone, and Troy granite from Cheng (1978).

FIG. 4. Relative difference in k∗ [i.e., 1k∗
rel =(k∗

iso−k∗
com)/k∗

com]
as a function of fluid bulk modulus (k f ) for Berea sandstone,
Boise sandstone, and Troy granite models.

EXPERIMENTAL EVIDENCE

The behavior exhibited in Figures 4 and 5 can be observed
in published laboratory results. Although the corresponding
measurements for the samples analyzed by Cheng (1978) are
not available, there are other ultrasonic elastic wave velocity
data appropriate for testing the modeling results. Specifically,
we will examine velocity data for partially saturated specimens
of Cotton Valley sandstone (Murphy, 1984b), Sierra White
granite (Murphy, 1984a), Spirit River sandstone (Knight and
Nolen-Hoeksema, 1990), and Travis Peak (W-5A) sandstone
(Gregory, 1976); the pore fluids in these samples were air and
distilled water (2.237 GPa). These rocks were selected for their
low permeability and porosity, features that we believe make
the assumption of negligible fluid pressure communication be-
tween liquid-filled pores at ultrasonic frequencies reasonable.
The relative differences in k [i.e., 1krel = (khigh − klow)/klow]
and µ [i.e., 1µrel = (µhigh − µlow)/µlow] were determined for
each rock; the subscripts “high” and “low” denote the elastic
moduli in the high and low frequency ranges.

The data used for this analysis are measurements of velocity
as a function of overall water saturation Sw . For comparison
with the modeling study, it is necessary to convert these data
from Sw into an effective bulk modulus for the pore filling. This
condition is satisfied at the low-frequency limit where the con-
tents of the entire pore space in a partially saturated medium
behave as a single pore fluid; the effective bulk modulus keff of
this mixture is

keff = kakw/[Swka + (1 − Sw)kw], (56)

where ka and kw are the bulk moduli of air and water, respec-
tively. The results of this analysis are expressed in terms of keff
defined by equation (56).

To achieve a corresponding situation at the high-frequency
limit, it would be required that the individual pores contain a
macroscopically homogeneous mixture of air and water (i.e.,
small air bubbles in the water phase) that is uniformly dis-
tributed throughout the entire pore space. The experimental

FIG. 5. Relative difference in µ∗ [i.e., 1µ∗
rel = (µ∗

iso − µ∗
com)/

µ∗
com] as a function of fluid bulk modulus (k f ) for Berea sand-

stone, Boise sandstone, and Troy granite models.
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data considered here controlled Sw by evaporative drying. This
produces a different pore scale fluid distribution where indi-
vidual pore spaces tend to be either air or water saturated.
The pore fluid bulk modulus for an individual pore at the high-
frequency limit is either ka or kw , not the effective bulk modulus
keff. Modeling results suggest that while the details of this anal-
ysis will differ for the evaporative drying and macroscopically
homogeneous mixture cases when expressed in terms of keff,
the general form and magnitude of 1krel and 1µrel will be
similar for these two saturation techniques.

The values of 1krel and 1µrel were computed for these four
rock samples using the method given in Winkler (1986). The
solid matrix bulk moduli used in this analysis were 56 GPa for
the granite and 33 GPa for the sandstones. A suggestion was
made by Winkler (1986) to treat the pore space volume occu-
pied by surface bound water as part of an effective rock matrix.
In this case, the wetted matrix system is used for estimating the
open system moduli, and both the porosity and water satura-
tion values are adjusted to reflect this redefinition of the rock
system. This was done for the Spirit River sandstone that shows
a pronounced effect caused by the bound water in both the elas-
tic wave velocity and the dielectric properties (Knight and Nur,
1987) at low saturations (i.e., for Sw < 0.30 in the case of the
velocity data).

The results of this analysis for 1krel and 1µrel are shown
in Figures 6 and 7, respectively. The modeling results given
in Figures 4 and 5 are also shown for reference. Due to the
nonlinear relationship between keff and Sw , the Sw range from
0.00 to 0.99 covers keff values from 155 kPa to 15.4 MPa. Hence,
there is a large region of keff values between 15.4 MPa and
2.24 GPa, corresponding to Sw values between 0.99 and 1.00,
that cannot be resolved by the data.

Overall, it can be seen that the general features predicted in
Figures 4 and 5 are reproduced by the experimental data shown

FIG. 6. Relative difference in k [i.e., 1krel = (khigh−klow)/klow]
as a function of effective fluid bulk modulus (keff) deter-
mined from ultrasonic elastic wave velocity data for par-
tially saturated specimens of Cotton Valley sandstone- , Sierra
White granite- , Spirit River sandstone- and Travis Peak
sandstone- . The modeling results for Berea sandstone-1,
Boise sandstone-2, and Troy granite-3 from Figure 4 are shown
for reference.

in Figures 6 and 7, respectively. The quantity 1krel in Figure 6
grows substantially as keff increases, obtaining a magnitude for
its maximum value comparable to that shown in Figure 4 (i.e.,
on the order of one to five). Further, it can be seen that the
1krel values at Sw = 1.00 are significantly below its maximum
for the three cases where measurements at full saturation were
taken (i.e., Cotton Valley, Sierra White, and Travis Peak). This
establishes the presence of the relative maximum exhibited in
Figure 4. Figure 7 shows an increasing 1µrel as keff increases,
with the maximum values between 0.1 and 0.5, simulating the
behavior on Figure 5. As predicted, the effects of changing keff
are greater for 1krel than for 1µrel.

CONCLUSIONS

A general framework for incorporating fluid pressure com-
munication into inclusion-based models for porous rocks has
been presented. This allows the use of inclusion-based formula-
tions to model the elastic response of porous rocks over a wide
range of measurement frequencies. Two significant results are
the proven equivalence of a large class of inclusion-based ap-
proximations with the Biot-Gassmann poroelastic theory and
the illustrated dependence of the elastic moduli on fluid pres-
sure communication and pore geometry.

Our inclusion-based formulation allows for the use of dif-
ferent forms of inclusion interactions. In particular, expres-
sions corresponding to the dilute volumetric average, Kuster-
Toksöz, EIAS and dilute interaction energy approximations
were derived. All four of these approximations were found to
replicate the Gassmann (1951) relationships. The equivalence
between these inclusion-based approximations and the poroe-
lastic theory permits the explicit use of pore geometry informa-
tion in determining poroelastic parameters that must otherwise
be empirically obtained. Further, this link allows poroelastic

FIG. 7. Relative difference in µ [i.e., 1µrel = (µhigh − µlow)/
µlow] as a function of effective fluid bulk modulus (keff) de-
termined from ultrasonic elastic wave velocity data for par-
tially saturated specimens of Cotton Valley sandstone- , Sierra
White granite- , Spirit River sandstone- , and Travis Peak
sandstone- . The modeling results for Berea sandstone-1,
Boise sandstone-2, and Troy granite-3 from Figure 5 are shown
for reference.
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behavior to be related to other physical properties that can
be described in terms of inclusion-based formulations, such as
dielectric permittivity (Endres and Knight, 1991).

The effects of fluid pressure communication and its relation-
ship to pore space geometry were investigated by determining
the effective elastic moduli for models with various pore shape
spectra. The effects of the fluid pressure communication on
the elastic moduli of porous rocks consist of two fundamental
elements. One is associated with the extensional part of the
deviatoric strain components and controls the effective shear
modulus. The other is caused by the cubical dilatation and gov-
erns the effective bulk modulus. The former is dependent on
the pore shape and orientation; the latter is a function of only
pore shape.

Using models given in Cheng (1978) for two sandstones and
a granite, it was found that the variation in the elastic moduli
of a porous rock due to changes in fluid pressure communica-
tion conditions can be very large. An analysis of experimental
data for three sandstones and a granite revealed similar effects
in the observed behavior of porous rocks. Since the cases of
isolated inclusions and complete pressure communication cor-
respond to the conditions at the high- and low-frequency limits,
respectively, large differences are predicted in the elastic mod-
uli determined from ultrasonic and seismic frequency measure-
ments. This leads to elastic wave velocity dispersion due to the
local flow or fluid squirt mechanism (Jones, 1986; Murphy et
al., 1986). While other factors, such as inertial and scattering
phenomena, affect elastic wave propagation, the results of this
paper indicate that the changes in fluid pressure communica-
tion can result in large changes in the effective elastic moduli
of a porous rock which would produce significant elastic wave
velocity dispersion.
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APPENDIX A

RESPONSE OF A COMMUNICATING SPHEROIDAL INCLUSION

Let us consider a randomly oriented spheroidal inclusion
when complete fluid pressure communication occurs. To esti-
mate the incremental strain within this inclusion, it is assumed
that it is embedded in a homogeneous, infinite background hav-
ing elastic moduli kb and µb. When this system is subjected to
an applied incremental strain field that has uniform cubical di-
latation and deviatoric components ∂θ A and ∂eA

i j , respectively,
at infinity, an incremental change in fluid pressure ∂pf is in-
duced in the inclusion. The corresponding incremental applied
stress at infinity is

∂σ A
i j = kb∂θ Aδi j + 2µb∂eA

i j , (A-1)

where δi j is the Kronecker delta.
Using the method of equivalent inclusions (Eshelby, 1957),

it can be shown that

−∂p f δi j = kb(∂θC + ∂θ A − ∂θT )δi j

+ 2µb
(
∂eC

i j + ∂eA
i j − ∂eT

i j

)
, (A-2)

where the superscripts C and T denote the “constrained” and
“stress-free transformation” incremental strains, respectively,
used in that analysis. The components of the uniform incre-
mental strain within the inclusion are

∂θ inc = ∂θC + ∂θ A (A-3)

and

∂einc
i j = ∂eC

i j + ∂eA
i j . (A-4)

Let us define the quantities ∂σ E
i j , ∂θ E and ∂eE

i j as follows:

∂σ E
i j = ∂σ A

i j + ∂p f δi j (A-5)

and

∂σ E
i j = kb∂θ Eδi j + 2µb∂eE

i j . (A-6)

Using these quantities, equation (A-2) can be rewritten as

kb(∂θC + ∂θ E − ∂θT )δi j + 2µb
(
∂eC

i j + ∂eE
i j − ∂eT

i j

) = 0.

(A-7)
This equation describes the behavior of an identically shaped
cavity when the applied incremental stress at infinity is ∂σ E

i j .
The expected value of the components of the uniform in-

cremental strain within such a randomly oriented cavity are
(Berryman, 1980b)

∂θ cav = P(kb, µb, 0, 0, α)∂θ E (A-8)

and

∂ecav
i j = Q(kb, µb, 0, 0, α)∂eE

i j . (A-9)

The incremental strain within the cavity are related to the other
strain quantities by

∂θ cav = ∂θC + ∂θ E (A-10)

and

∂ecav
i j = ∂eC

i j + ∂eE
i j . (A-11)

Hence, equations (A-8) and (A-9) can be expressed as(
∂θ inc + ∂p f /kb

) = (
∂θ A + ∂p f /kb

)
P(kb, µb, 0, 0, α)

(A-12)
and

∂einc
i j = Q(kb, µb, 0, 0, α)∂eA

i j . (A-13)

APPENDIX B

ESTABLISHING THE EQUIVALENCE BETWEEN INCLUSION-BASED APPROXIMATIONS
AND GASSMANN-BIOT THEORY

The inclusion-based analogs for the open system moduli
k∗

open andµ∗
open are obtained by using an infinitely compressible

fluid (i.e., k f = 0) in the various approximations. In the case of
the dilute volumetric average approximation, equations (22)
and (23) give

k∗
open = km[1 − φγ̄ (km, µm, 0, 0)] (B-1)

and

µ∗
open = µm[1 − φχ̄(km, µm, 0, 0)]. (B-2)

Using equations (28) and (29), the Kuster-Toksöz approxima-
tion yields

k∗
open = km

3km + 4µm − 4φµmγ̄ (km, µm, 0, 0)
3km + 4µm + 3φkmγ̄ (km, µm, 0, 0)

(B-3)

and

µ∗
open =

µm
15km + 20µm − φ(9km + 8µm)χ̄(km, µm, 0, 0)
15km + 20µm + 6φ(km + 2µm)χ̄(km, µm, 0, 0)

.

(B-4)

The open system moduli for the EIAS approximation obtained
from equations (34) and (35) are

k∗
open = km{(1−φ)/[(1−φ)+φγ̄ (km, µm, 0, 0)]} (B-5)

and

µ∗
open = µm{(1−φ)/[(1−φ)+φχ̄(km, µm, 0, 0)]}. (B-6)
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The dilute interaction energy approximations of open system
moduli given by equations (50) and (51) are

k∗
open = km/[1 + φγ̄ (km, µm, 0, 0)] (B-7)

and

µ∗
open = µm/[1 + φχ̄(km, µm, 0, 0)]. (B-8)

The equivalence of these inclusion-based approximations
with the Gassmann-Biot theory is established by replacing
kopen and µopen in equations (52) and (53) with the appropriate
expressions obtained for k∗

open and µ∗
open given above. In the

case of the dilute volumetric average approximation, this leads
to the following for the bulk moduli:

kclosed = km{k f {km − km[1 − φγ̄ (km, µm, 0, 0)]}
+ φkm[1 − φγ̄ (km, µm, 0, 0)]

× (km − k f )}/{k f {km − km[1 − φγ̄ (km, µm, 0, 0)]}
+ φkm(km − k f )}. (B-9)

This expression can be simplified to

kclosed = km + φkm(k f − km)γ̄ (km, µm, 0, 0)
km + k f [γ̄ (km, µm, 0, 0) − 1]

; (B-10)

hence, it is established that kclosed = k∗
com for this approxima-

tion. Following this procedure, the same result can be shown for
the other three inclusion-based approximations. For the shear
moduli, it can be seen that µ∗

open = µ∗
com for all four approx-

imations. It follows that when µ∗
open replaces µopen in equa-

tion (53), we obtain µclosed = µ∗
com in all four cases. Hence, the

relationships between the inclusion-based analogs for the open
and closed system moduli predicted by these four inclusion-
based approximations are identical to the Gassmann (1951)
poroelastic relationships.


